placecell.config#
Configuration models for pcell, loaded from YAML.
Classes
|
Top-level application configuration. |
|
Behavior / place-field configuration. |
|
Bundle of data file paths for neural and behavior data. |
|
Configuration for maze/tube-based 1D analysis. |
|
Neural data configuration. |
|
OASIS deconvolution parameters. |
|
Spatial map settings for 1D tube analysis. |
|
Spatial map visualization configuration for 2D arena analysis. |
- class placecell.config.OasisConfig(*, g: tuple[float, float], baseline: str | float = 'p10', penalty: Annotated[float, Ge(ge=0)] = 0.0, s_min: Annotated[float, Ge(ge=0)] = 0.0)#
Bases:
BaseModelOASIS deconvolution parameters.
- Parameters:
g (tuple[float, float])
baseline (str | float)
penalty (Annotated[float, Ge(ge=0)])
s_min (Annotated[float, Ge(ge=0)])
- g: tuple[float, float]#
- baseline: str | float#
- penalty: float#
- s_min: float#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class placecell.config.NeuralConfig(*, fps: float = 20.0, oasis: OasisConfig, trace_name: str = 'C')#
Bases:
BaseModelNeural data configuration.
- Parameters:
fps (float)
oasis (OasisConfig)
trace_name (str)
- fps: float#
- oasis: OasisConfig#
- trace_name: str#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class placecell.config.SpatialMap2DConfig(*, bins: Annotated[int, Ge(ge=5), Le(le=200)], min_occupancy: Annotated[float, Ge(ge=0)], occupancy_sigma: Annotated[float, Ge(ge=0)], activity_sigma: Annotated[float, Ge(ge=0)], n_shuffles: Annotated[int, Ge(ge=1), Le(le=10000)], random_seed: int | None = None, event_threshold_sigma: float = 0.0, p_value_threshold: Annotated[float, Ge(ge=0.0), Le(le=1.0)] = 0.05, min_shift_seconds: Annotated[float, Ge(ge=0)] = 20.0, si_weight_mode: str = 'binary', place_field_threshold: Annotated[float, Gt(gt=0.0), Lt(lt=1.0)] = 0.05, place_field_min_bins: Annotated[int, Ge(ge=1)] = 5, place_field_seed_percentile: float = 95.0, n_split_blocks: Annotated[int, Ge(ge=2), Le(le=100)] = 10, block_shifts: list[float] = [0.0], trace_time_window: Annotated[float, Gt(gt=0)] = 600.0)#
Bases:
BaseModelSpatial map visualization configuration for 2D arena analysis.
- Parameters:
bins (Annotated[int, Ge(ge=5), Le(le=200)])
min_occupancy (Annotated[float, Ge(ge=0)])
occupancy_sigma (Annotated[float, Ge(ge=0)])
activity_sigma (Annotated[float, Ge(ge=0)])
n_shuffles (Annotated[int, Ge(ge=1), Le(le=10000)])
random_seed (int | None)
event_threshold_sigma (float)
p_value_threshold (Annotated[float, Ge(ge=0.0), Le(le=1.0)])
min_shift_seconds (Annotated[float, Ge(ge=0)])
si_weight_mode (str)
place_field_threshold (Annotated[float, Gt(gt=0.0), Lt(lt=1.0)])
place_field_min_bins (Annotated[int, Ge(ge=1)])
place_field_seed_percentile (float)
n_split_blocks (Annotated[int, Ge(ge=2), Le(le=100)])
block_shifts (list[float])
trace_time_window (Annotated[float, Gt(gt=0)])
- bins: int#
- min_occupancy: float#
- occupancy_sigma: float#
- activity_sigma: float#
- n_shuffles: int#
- random_seed: int | None#
- event_threshold_sigma: float#
- p_value_threshold: float#
- min_shift_seconds: float#
- si_weight_mode: str#
- place_field_threshold: float#
- place_field_min_bins: int#
- place_field_seed_percentile: float#
- n_split_blocks: int#
- block_shifts: list[float]#
- trace_time_window: float#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class placecell.config.MazeConfig(*, tube_order: list[str] = ['Tube_1', 'Tube_2', 'Tube_3', 'Tube_4'], zone_column: str = 'zone', tube_position_column: str = 'tube_position', split_by_direction: bool = True)#
Bases:
BaseModelConfiguration for maze/tube-based 1D analysis.
- Parameters:
tube_order (list[str])
zone_column (str)
tube_position_column (str)
split_by_direction (bool)
- tube_order: list[str]#
- zone_column: str#
- tube_position_column: str#
- split_by_direction: bool#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class placecell.config.SpatialMap1DConfig(*, bin_width_mm: Annotated[float, Gt(gt=0)] = 10.0, min_occupancy: Annotated[float, Ge(ge=0)] = 0.025, occupancy_sigma: Annotated[float, Ge(ge=0)] = 2.0, activity_sigma: Annotated[float, Ge(ge=0)] = 2.0, n_shuffles: Annotated[int, Ge(ge=1), Le(le=10000)] = 1000, random_seed: int | None = None, p_value_threshold: Annotated[float, Ge(ge=0.0), Le(le=1.0)] = 0.05, min_shift_seconds: Annotated[float, Ge(ge=0)] = 20.0, si_weight_mode: str = 'amplitude', n_split_blocks: Annotated[int, Ge(ge=2), Le(le=100)] = 10, block_shifts: list[float] = [0.0], trace_time_window: Annotated[float, Gt(gt=0)] = 600.0)#
Bases:
BaseModelSpatial map settings for 1D tube analysis.
- Parameters:
bin_width_mm (Annotated[float, Gt(gt=0)])
min_occupancy (Annotated[float, Ge(ge=0)])
occupancy_sigma (Annotated[float, Ge(ge=0)])
activity_sigma (Annotated[float, Ge(ge=0)])
n_shuffles (Annotated[int, Ge(ge=1), Le(le=10000)])
random_seed (int | None)
p_value_threshold (Annotated[float, Ge(ge=0.0), Le(le=1.0)])
min_shift_seconds (Annotated[float, Ge(ge=0)])
si_weight_mode (str)
n_split_blocks (Annotated[int, Ge(ge=2), Le(le=100)])
block_shifts (list[float])
trace_time_window (Annotated[float, Gt(gt=0)])
- bin_width_mm: float#
- min_occupancy: float#
- occupancy_sigma: float#
- activity_sigma: float#
- n_shuffles: int#
- random_seed: int | None#
- p_value_threshold: float#
- min_shift_seconds: float#
- si_weight_mode: str#
- n_split_blocks: int#
- block_shifts: list[float]#
- trace_time_window: float#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class placecell.config.BehaviorConfig(*, type: Literal['arena', 'maze'] = 'arena', behavior_fps: Annotated[float, Gt(gt=0)], speed_threshold: float = 50.0, speed_window_frames: int = 5, bodypart: str, x_col: str = 'x', y_col: str = 'y', jump_threshold_mm: Annotated[float, Gt(gt=0)] = 100.0, spatial_map_2d: SpatialMap2DConfig | None = None, maze: MazeConfig | None = None, spatial_map_1d: SpatialMap1DConfig | None = None)#
Bases:
BaseModelBehavior / place-field configuration.
- Parameters:
type (Literal['arena', 'maze'])
behavior_fps (Annotated[float, Gt(gt=0)])
speed_threshold (float)
speed_window_frames (int)
bodypart (str)
x_col (str)
y_col (str)
jump_threshold_mm (Annotated[float, Gt(gt=0)])
spatial_map_2d (SpatialMap2DConfig | None)
maze (MazeConfig | None)
spatial_map_1d (SpatialMap1DConfig | None)
- type: Literal['arena', 'maze']#
- behavior_fps: float#
- speed_threshold: float#
- speed_window_frames: int#
- bodypart: str#
- x_col: str#
- y_col: str#
- jump_threshold_mm: float#
- spatial_map_2d: SpatialMap2DConfig | None#
- maze: MazeConfig | None#
- spatial_map_1d: SpatialMap1DConfig | None#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class placecell.config.DataPathsConfig(*, neural_path: str, neural_timestamp: str, behavior_position: str, behavior_timestamp: str, behavior_video: str | None = None, arena_bounds: tuple[float, float, float, float] | None = None, arena_size_mm: tuple[float, float] | None = None, camera_height_mm: Annotated[float | None, Gt(gt=0.0)] = None, tracking_height_mm: Annotated[float | None, Ge(ge=0.0)] = None, behavior_graph: str | None = None, oasis: OasisConfig | None = None)#
Bases:
BaseModelBundle of data file paths for neural and behavior data.
- Parameters:
neural_path (str)
neural_timestamp (str)
behavior_position (str)
behavior_timestamp (str)
behavior_video (str | None)
arena_bounds (tuple[float, float, float, float] | None)
arena_size_mm (tuple[float, float] | None)
camera_height_mm (Annotated[float | None, Gt(gt=0.0)])
tracking_height_mm (Annotated[float | None, Ge(ge=0.0)])
behavior_graph (str | None)
oasis (OasisConfig | None)
- classmethod from_yaml(path: str | Path) DataPathsConfig#
Load from a YAML file.
- Parameters:
path (str | Path)
- Return type:
- neural_path: str#
- neural_timestamp: str#
- behavior_position: str#
- behavior_timestamp: str#
- behavior_video: str | None#
- arena_bounds: tuple[float, float, float, float] | None#
- arena_size_mm: tuple[float, float] | None#
- camera_height_mm: float | None#
- tracking_height_mm: float | None#
- behavior_graph: str | None#
- oasis: OasisConfig | None#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class placecell.config.AnalysisConfig(*, id: Annotated[str, _PydanticGeneralMetadata(pattern='[\\w\\-\\/#]+')], mio_model: Annotated[str, AfterValidator(func=_is_identifier)] = None, mio_version: str = '0.8.1', neural: NeuralConfig, behavior: BehaviorConfig | None = None)#
Bases:
MiniscopeConfig,_PlacecellConfigMixinTop-level application configuration.
- Parameters:
id (Annotated[str, _PydanticGeneralMetadata(pattern='[\\w\\-\\/#]+')])
mio_model (Annotated[str, AfterValidator(func=~mio.types._is_identifier)])
mio_version (str)
neural (NeuralConfig)
behavior (BehaviorConfig | None)
- model_config: ClassVar[ConfigDict] = {'extra': 'ignore'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- neural: NeuralConfig#
- behavior: BehaviorConfig | None#
- with_data_overrides(data_cfg: DataPathsConfig) AnalysisConfig#
Create a new config with data-specific overrides applied.
- Parameters:
data_cfg (DataPathsConfig) – Data configuration that may contain override values.
- Returns:
New config with overrides applied. Original config is unchanged.
- Return type: